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Radiation damping of the electron in a gravitational field 

A 0 Baruttg and D VillarroelS 
t Sektion Physik der Universitat Munchen, 8 Munchen 2, Germany 
1 Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de 
Chile, Santiago, Chile 

Received 16 May 1975 

Abstract. The radiation damping terms in the equation of motion of an electron in a curved 
space are deduced by the method of analytic continuation. This method works in curved 
space with essentially the same simplicity as in the flat space case. The contrast between the 
laborious usual procedure and the simplicity of the present one is remarkable. 

1. Introduction 

The radiation terms of the Lorentz-Dirac equation of motion for an electron have been 
recently obtained (Barut 1974, Barut and Villarroel 1975) by an extremely simple 
method starting from the equation 

= e F i n a 8 i P ,  (1.1) 
The method consists of a kind of analytical prolongation of equation (l . l) ,  when the 
retarded field F,,, of the electron is also taken into account through the equation 

moYp(s + 67) = e[F’””,(x = Z(T + 6.r)) + Fp,(x = z(.r + &)), z(s)]i”(s + 6s), (1.2) 
proceeding then to expand the second term of this equation in powers of 6s. The 
divergent term that appears when 6.r + 0 is absorbed, as usual, by a mass renormaliza- 
tion. The Lorentz-Dirac equation then follows by taking the limit 6~ -+ 0. The purpose 
of this note is to obtain the equation of motion for the electron in a Riemannian space by 
the same method. 

The equation of motion of an electron in a curved space has been studied by DeWitt 
and Brehme (1960) and Hobbs (1968) following essentially the procedure of Dirac (1938), 
that is, by computing the flux of the energy-momentum tensor across a thin tube that 
surrounds the electron world line. This method is rather laborious even in flat space. 
Recently (Tabensky and Villarroel 1975) the derivation of the Lorentz-Dirac equation 
has been simplified by studying the four-momentum of the electron’s electromagnetic 
field. Unfortunately this concept is useless in a curved space. As we will show below, 
the method of analytic continuation works in curved space with essentially the same 
simplicity as it works in flat space. 

In flat space the expansion of the second term of equation (1.2) is made in a Lorentz 
covariant way. In a curved space we must preserve, ofcourse, covariance under arbitrary 
transformation of coordinates. A very useful quantity that allows covariant expansions 
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is the characteristic function, or world function, ~ ( x ,  2). If we designate by s the geodesic 
interval, which gives the magnitude of the invariant distance between x and z as measured 
along the geodesic joining them, the world function b(x, z) is defined by 

d = *is2 (1.3) 

which is positive for space-like intervals and negative for time-like ones. We will be 
using the same symbols, notation and conventions as DeWitt and Brehme (1960, to be 
hereafter referred to as DB). The signature of g,, is given by (- + + +). Covariant 
differentiation is denoted by a dot. Indices taken from the letters a to K in the Greek 
alphabet are always to be associated with the point z, while indices taken from A to w are 
always to be associated with the point x. The electron world line is given by a set of 
functions z"(z), where T is the proper time. Dots over the z's denote absolute covariant 
differentiation with respect to T .  Thus 

i'l = dz"/dr 

2" = di"/d.r + T,,"iPiY 

etc. We also choose c = 1 ; therefore 

(1.4) 

The covariant retarded field of the electron is given by (DB, equation (3.52)). 

F,,, = e - K - ~ O . , , U , , ~ ~ ~ ~ + ~ K - ~ ~ , , U , , ~ ~ - K - ~ ~ . , U , , ( ~ " -  K'K- ' 2" ) -  K -  ' ~ , ~ , , i '  

(1.6) 1 r -  

- K ~ ~ ~ . , U , , . ~ ~ ~ ~ ~ + K - ~ O . , U , , ~ " +  j - m u , , u . , , i z  dr-(p - 1') . 

The field F,, is a bi-tensor that depends on the point x where the field is evaluated, and on 
the point z which is the retarded point associated to x, that is, it is defined by 

i 

a(x, z(z-)) = 0. (1.7) 

This is the world function that appears in equation (1.6). In addition, the other terms in 
this equation are defined as follows : K = oJ, IC' = o . , S ? ~ ,  x = ~ . , ~ i " i ~ .  The bi-vector 
U," is given by (DB, equation (2.50)) 

(1.8) 

where g,,(x,z) is the bi-vector of geodesic parallel displacement. The bi-scalar A is 
defined by (DB, equation (1.60)) 

112- 
U,, = A g,, 

(1.9) A = g-'D 

where D and g are the following determinants : 

(1.10) 
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The bivector U , , ,  the ‘tail’, is a complicated function of the metric. There is no known 
simple expression like (1.8) for it. 

We emphasize that we use only the retarded field. The introduction of the advanced 
field used by DeWitt and Brehme (1960) and Hobbs (1968) is superfluous, even if we 
follow their procedure. 

2. The radiation damping terms 

In order to carry out the expansion of the second term of equation (1.2) in a covariant 
way, we use the same techniques as in DB. The world function a(x, z )  associated with 
the points x and z is the structural element on which these covariant expansions are 
based. If we have a bi-tensor, say q,, whose indices refer to the same point z ,  we can 
expand i t  about z in the covariant form 

where s is the length of the geodesic joining x and z. The coefficients A,, , etc are ordinary 
local tensors at z.  They can be determined easily from the equations 

Now, if we have a bi-tensor whose indices do not all refer to the point z ,  like the field F,,, 
of equation (1.6), we define a new bi-tensor all of whose indices do refer to the point z 
with the help of the bi-vector of geodesic parallel displacement g,,, and then we expand 
this new bi-tensor by means of equation (2.1). 

As equation (1.2) shows, we need to evaluate the field F,, given by equation (1.6) at 
the point x = Z(T  + 65).  Therefore the point Z ( T )  is not the retarded one associated with x. 
The world function that will appear in our expansions is associated with the geodesic 
that joins the points x = i ( T  + 6 ~ )  and z(T) .  But in the last instance our parameter in the 
expansion of equation (1.2) is 6 ~ .  For this reason it is necessary to find the coefficients 
4,. B,, etc in 

(2.3) 0.,(X(T f S T ) ,  Z ( T ) )  = A16T + B,6T2 + c,6T3 + 0 ( 6 T 4 )  

where A, ,  E,. . . are local vectors at the point z (T) .  For this purpose let us consider the 
quantity CT.,(X(T +6~), z(T*)). Of course we can write 

0.,(X(T + 6 T ) ,  Z (T*) )  = U,, +6.,6T +f8.,6T2 -kb%.,6T3 + 0 ( 6 T * ) .  (2.4) 

The geodesic of the world function on the left-hand side of this equation is the one 
joining the points X ( T  + 6 r )  and z(T*). But the corresponding geodesic on the right-hand 
side is the one joining the points X ( T )  and z(T*). Now as the T derivatives a,, a,, etc are 
evaluated at the point x(T), we can express them in the manifestly covariant forms (DB, 
equations (3.Q (3.9), etc) 
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In order to find the coefficients in equation (2.3) we need the following results (DB, 
equations (1.18), (1.52), (1.68), (1.69)): 

lim o., = 0 
X - Z  

lim a,%,, = - g,, 

lim o.lpr = 0 

X - Z  

X + Z  

lim (T.,,~~ = lim gra(+RrVpU - 
x-z  X - Z  

Taking the limit X(T) + z(T*)  in equation (2.4) and using (2.5), (2.6) and the symmetries 
of the Riemann tensor, we find 

~ J X ( T  + 6 T ) ,  z ( T ) )  = - i ,dr - ; ~ , 6 T 2  - g f ~ r 3  + o(sT4). (2.7) 

In particular, from this equation and equation (1.5) it follows that 

By a similar procedure, we find 

(2.9) 

With the help of (2.7), (2.8) and (2.9) it is easy to compute the second term of equation 
(1.2). Let us consider for example the expansion of the term 

- K - 2 o . , , U , , i 3 i P  (2.10) 

that appears in equation (1.6). Following the method described at the beginning of this 
section, we obtain the following results (see DB for details) : 

(2.11) 

where RlPya and R,, are the Riemann and Ricci tensors respectively. Therefore, 

- K - 2 5 . , , ~ i 2 i '  = g&p( - ~ ~ a y 6 & T . Y r T . f i P i d  + 0 ( S 3 ) ) K - '  (2.12) 

where we have introduced the notation 

A. . . ,  ,..,,,, - - A. . . ,  ,,,,,,,. - A  ,,,,,.,, ,.,. . 
U 

Now, from equations (2.7) and (2.8) it follows that 

(2.13) 

- K - 2 0 . , , p i ' i B  = o(6T).  (2.14) 

This shows that the term (2.10) does not contribute to equation (1.2) when 6~ + 0. 
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Straightforward computation gives the following results for the other terms of equation 
(1.6) : 

X K - 3 C 7 . , , , i "  = )g,,g (i"Z86T-' +&Z"zp)+o(6r) 

- ~ - 2 c ,  btu" ( z " - K ' K - ~ ~ , )  = -g ,&a - i"yPdr-l+o(&) 
U"@ 

~,,.~i" dr  = g,,g,, J . L'"~.P(z(T), z(r'))iy'(r') d7'+ O(6r).  J-, - x  

Combining equations (2.14), (2.15) and (1.2) we obtain 

moe,(s + 67) = eFinpv(z(r + 6r))zv(r + 67) + e2(g,,gvy - gVpg,,)z"(r + 6s) 
x - )iPyY6r- 1 + 1iP-T - 1 Y ' P i a  + f R ,  @ Y g i a i V  6 JR 6Z  

X I 
i 

+$ 1; f BY6'(z(s), z(r'))i''(r') dr'+ O(6r) 

where 

f"YU = L',"., -b,. 

gv@i"(r + 6r)  = i, +i',Sr + O(Sr2) 

By definition of parallel displacement we have that 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where the coefficients on the right-hand side are evaluated at the proper time r. In view 
of equation (2.18) and 

g""g,@ = 6," 

we can write (2.16) in the form 

mogP2?i',(r + 67) = eg~aFinpy(z (r  + 6r))iv(r + 6 ~ )  

+ 2 ,  f asy,iy' dr' + o ( 6 r )  
X 

(2.19) 

(2.20) 

by multiplying both terms by gpa and using equation (1.5).  The Riemann tensor has 
disappeared because 

R6,Ss - R a p u g  (2.21) 
is skew-symmetric in the indices 6, q .  

mog""i',(r + 6r )  = eg""P",,(z(r + Bt))i"(r + 67)- (e2/26t)gp,2,(r + 67) + +e2(?'- y2ia) 

In order to perform mass renormalization we rewrite equation (2.20) as follows : 

- 3e2(R",ia + 2"RByiPiy) + e2ia f usY.iy' dr' + O(6r)  (2.22) SI x 
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where we have used the analogue of equation (2.18) for the vector gwal,(r + 6r). Perform- 
ing mass renormalization and taking the limit 6.5 + 0, we obtain the equation of motion 
for the electron : 

my" = eF'""@ + *e2(2- - 12iu)-$fe2(Rgaifl + i"R,,iOiY) + ez jp  fUay,i"(t') d?' (2.23) 

where as usual 

m = mo+ lim (e2/26z). 
dr -0  

(2.24) 

Equation (2.23) is, of course, the one that follows from the DeWitt and Brehme procedure 
(see Hobbs 1968, equation (5.28)). The absence of the terms with the Ricci tensor in the 
final equation quoted by DB is due, as Hobbs (1968) points out, to the fact that the left- 
hand side of equation (5.11) in DB would be evaluated at the retarded and advanced 
proper times. 
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